DISCOVERING STATISTICS USING R

Multivariate analysis of variance (MANOVA)

Self-test answers

,_/‘.” 3 e Use ggplot2 to plot a scatterplot of the number of obsession-related actions (x-
ey axis) against obsession-related thoughts (y-axis) for each treatment group (as

il ol
M separate panels).

ocdScatter <- ggplot(ocdData, aes(Actions, Thoughts))

ocdScatter + geom_point() + geom_smooth(method = "Im")+ labs(x = "Number of Obsession-
Related Behaviours'™, y = "Number of Obsession-Related Thoughts'™) + facet_wrap(~Group,
ncol = 3)

,_/‘r_’ 3 e Use ggplot2 to plot a bar graph (with error bars) of the treatment group on the
o~ ’,“53% x-axis and different-coloured bars to represent the mean number of obsession-
related thoughts and behaviours.

First, we need to restructure the data into long format:

ocdMelt<-melt(ocdData, id = c("Group'), measured = c("Actions", "Thoughts™))
names(ocdMelt)<-c("'Group', '"Outcome_Measure', "Frequency')

We can now do the bar chart using this long format data:

ocdBar <- ggplot(ocdMelt, aes(Group, Frequency, Till = Outcome_Measure))

ocdBar + stat_summary(fun.y = mean, geom = “bar", position = "dodge'™) +
stat_summary(fun.data = mean_cl_boot, geom = "errorbar",
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Treatment Group", y =
“Number of Thoughts/Actions', fill = "Outcome Measure') + scale_y continuous(breaks =

seq(0, 20, by = 2))

e Use ggplot2 to plot boxplots of treatment group on the x-axis and obsession-
related thoughts and actions displayed on the y-axis (in different colours).

ocdBoxplot <- ggplot(ocdMelt, aes(Group, Frequency, colour = Outcome_Measure))

ocdBoxplot + geom_boxplot() + labs(x = "Treatment Group', y = "Number of

Thoughts/Actions'™, colour = "Outcome Measure'™) + scale_y continuous(breaks = seq(O,
20, by = 2))

T
(e e Delete case 26 from the dataframe and redo the Shapiro test of multivariate

M normality.

To remove the outlier we can create a new dataframe called ocdNoOutlier that is based on the
ocdData dataframe. Remembering that the square brackets mean we are selecting part of the
dataframe and that anything before the comma selects rows, and anything after selects columns, the
[-26, ] in the following command deletes row 26 (the minus sign means ‘delete’) but retains all of the
columns (there is nothing after the comma so everything is retained):

ocdNoOutlier<-ocdData[-26,]

The data look like this (note that case 26 is missing):
Group Actions Thoughts
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1 CBT 5 14
2 CBT 5 11
3 CBT 4 16
4 CBT 4 13
5 CBT 5 12
6 CBT 3 14
7 CBT 7 12
8 CBT 6 15
9 CBT 6 16
10 CBT 4 11
11 BT 4 14
12 BT 4 15
13 BT 1 13
14 BT 1 14
15 BT 4 15
16 BT 6 19
17 BT 5 13
18 BT 5 18
19 BT 2 14
20 BT 5 17
21 NT 4 13
22 NT 5 15
23 NT 5 14
24 NT 4 14
25 NT 6 13
27 NT 7 13
28 NT 4 16
29 NT 6 14
30 NT 5 18

We then need to extract the NT group data using the same command as in the book:
nt<-t(ocdNoOutlier[21:29, 2:3])

Note that the only difference compared to the book is that we have selected rows 21 to 29 rather
than 21 to 30 because, of course, we have one row fewer than we had before.
We can then run the Shapiro-Wilk test on this variable:

mshapiro.test(nt)

The results show that removing the outlier does make the data multivariate normal because the p-
value is not significant (p = .208):
Shapiro-Wilk normality test

data: Z
W = 0.8918, p-value = 0.208

e  Why might the univariate tests be non-significant when the multivariate tests
were significant?

Although the issue of power is complicated in MANOVA (see the book chapter), one reason why the
multivariate statistics might be significant when the univariate tests are not is because the
multivariate tests take account of the correlations between dependent variables, whereas the
univariate tests do not. It’s also worth remembering that the univariate and multivariate tests look at
different things: the multivariate tests tell us whether groups can be discriminated based on a linear
combination of the dependent variables, whereas the univariate tests tell us whether the groups can
be discriminated by a single variable.

Oliver Twisted

Please Sir, can | have some more ... maths?

Calculation of E™*
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£ 51 13
13122
determinant of E, |E| = (51x 122) - (13x 13) = 6053
trix of mi for E 122 13
matrix of minors for E=| .,
=+ -
pattern of signs for 2 x 2 matrix = +j
122 -13
matrix of cofactors =
-13 51

The inverse of a matrix is obtained by dividing the matrix of cofactors for E by |E , the determinant of

E:

E1_ 6102523 6_01533 _( 0.0202 -0.0021
Tl =13 5L |7(-00021 0.0084
6053 6053

Calculation of HE™:
HE - 10.47 -7.53) 0.0202 -0.0021
“(-753 19.47) -0.0021  0.0084
[(10.47 x0.0202)+ (- 7.53x-0.0021)] [(10.47 x-0.0021)+(~7.53x 0.0084)]
[(~7.53%0.0202)+(19.47 x~0.0021)] [(~7.53x~0.0021)+(19.47 x 0.0084)]

0.2273 -0.0852
-01930 0.1794

Calculation of eigenvalues

The eigenvalues or roots of any square matrix are the solutions to the determinantal equation |A —
All =0, in which A is the square matrix in question and / is an identity matrix of the same size as A.
The number of eigenvalues will equal the number of rows (or columns) of the square matrix. In this
case the square matrix of interest is HE ":

[HE"=21]=| _)los0  01704) 0 2

[ 0.2273 —0.0852] [/1 0]

|((0.2273-2)  -0.0852
L -01930  (0.1794-2)

=[(0.2273 - 1)Y0.1794 — 2)— (- 0.1930 x —0.0852)]
= A —0.22732 - 0.17942 +0.0407 — 0.0164
= A - 0.4067 4 +0.0243

Therefore the equation |HE " — A/| = 0 can be expressed as:
A —0.40671+0.0243=0

To solve the roots of any quadratic equation of the general form aA*> +bAl+c=0 we can apply the
following formula:

—b+ [b2—4ucj
ﬂi:T

For the quadratic equation obtained, a = 1, b = —0.4067, ¢ = 0.0243. If we replace these values into
the formula for discovering roots, we get:
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. —biwlib2—4aci

i 2a
~0.4067 + /|- 0.4067F —0.0972]
- 2

_ 0.4067 £0.2612
2

_ 0.6679 . 0.1455
B )

=0.334 or 0.073
Hence, the eigenvalues are 0.334 and 0.073.

Labcoat Leni’s real research

A lot of hot air

Problem

Marzillier, S. L., & Davey, G. C. L. (2005). Cognition and Emotion, 19, 729-750.

Have you ever wondered what researchers do in their spare time? Well, some of
them spend it tracking down the sounds of people burping and farting! It has long
been established that anxiety and disgust are linked. Anxious people are, typically,
easily disgusted. Throughout this book | have talked about how you cannot infer
;’Q causality from relationships between variables. This has been a bit of a
'. . conundrum for anxiety researchers: does anxiety cause feelings of digust or does
|’I, a low threshold for being disgusted cause anxiety? Two colleagues of mine at
Sussex addressed this in an unusual study in which they induced feelings of
anxiety, feelings of disgust, or a neutral mood, and they looked at the effect that these induced
moods had on feelings of anxiety, sadness, happiness, anger, disgust and contempt. To induce these
moods, they used three different types of manipulation: vignettes (e.g. ‘You’re swimming in a dark
lake and something brushes your leg’ for anxiety, and ‘You go into a public toilet and find it has not
been flushed. The bowl of the toilet is full of diarrhoea’ for disgust), music (e.g. some scary music for
anxiety, and a tape of burps, farts and vomitting for disgust), videos (e.g. a clip from Silence of the
Lambs for anxiety and a scene from Pink Flamingos in which Divine eats dog faeces for disgust) and
memory (remembering events from the past that had made the person anxious, disgusted or neutral).
Different people underwent anxious, disgust and neutral mood inductions. Within these groups, the
induction was done using either vignettes and music, videos, or memory recall and music for different
people. The outcome variables were the change (from before to after the induction) in six moods:
anxiety, sadness, happiness, anger, disgust and contempt.

The data are in the file Marzillier and Davey (2005).dat. Draw an error bar graph of the changes in
moods in the different conditions, then conduct a 3 (Mood: anxiety, disgust, neutral) x 3 (Induction:
vignettes + music, videos, memory recall + music) MANOVA on these data. Whatever you do, don’t
imagine what their fart tape sounded like while you do the analysis!

Solution

First of all make sure you have set your working directory to where the data file is located and then
read in the data:

marazillierData<-read.delim("'Marzillier & Davey (2005).dat", header = TRUE)

Next we want to make sure that the categorical variables Induction and Mood are set to be factors
and that the levels of each factor are in the correct order:
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marazillierData$Induction<-factor(marazillierData$Induction, levels = c("Vignettes +
Music', "Videos'", "Memory Recall + Music'))

marazillierData$Mood<-factor(marazillierData$Mood, levels = c("Anxious", "Disgust",
“Neutral'))

To do the graph we have to convert the dataframe, which is currently in the wide format, to the long
format. We can do this by using the melt() function:

moodMelt<-melt(marazillierData, id = c("Induction”, "Mood"), measured =
c("Anxiety.Change', "Sad.Change', "Happy.Change"™, *"Angry.Change', "Disgust.Change",
""Contempt.Change'™))

We can then specify names for the new variables by executing:
names(moodMelt)<-c(*'Induction™, *Mood", *Outcome_Measure', "Frequency')

Now that we have the data in the long format we can plot the error bar graph by executing:

moodBar <- ggplot(moodMelt, aes(Mood, Frequency, fill = Outcome_Measure))

moodBar + stat _summary(fun.y = mean, geom = “bar', position = "dodge'™) +
stat_summary(fun.data = mean_cl_boot, geom “errorbar",
position=position_dodge(width=0.90), width 0.2) + labs(x = "Mood Induction Type", y
= "Mean Change™, fill = "Outcome Measure')+ facet_wrap(~Induction, ncol = 3) +
scale_y continuous(breaks = seq(-40, 70, by = 10))

The completed graph will look like that below. This shows that the neutral mood induction (regardless
of the way in which it was induced) didn’t really affect mood too much (the changes are all quite
small). For the disgust mood induction, disgust always increased quite a lot regardless of how disgust
was induced. Similarly, the anxiety induction raised anxiety (predominantly). Happiness decreased for
both anxiety and disgust mood inductions.

Vignettes + Music Videos Memory Recall + Music

Sad.Change

I
g il e ™ g

Outcome Measure
I I Anxiety.Change

Mean Change

Contempt.Change

Neutr Anxious Di .““ Neutral Anxious Jisgust Neutral
Mood Induction Type

Next we can set some contrasts. If we first look at the Mood variable, it makes sense for us to
compare some form of mood induction (anxious and disgust) with a neutral mood induction, and also
compare anxious with disgust. We can set these two contrasts by executing:

Mood_vs_Neut<-c(1, 1, -2)
anx_vs_disg <-c(1, -1, 0)
contrasts(marazillierData$Mood)<-cbind(Mood_vs_None, anx_vs_disg)

If we next look at the variable Induction, it makes some sense to compare the two methods of mood
induction including music (vignettes and memory recall) with the video method, which does not
include music. We could then compare the two methods that included music, vignettes and memory.
We can set these contrasts by executing:
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Music_vs_None<-c(1, -2, 1)
vig_vs_mem <-c(1, 0, -1)
contrasts(marazillierData$Induction)<-cbind(Music_vs_None, vig_vs_mem)

Main analysis

To do the main analysis, we specify a model in the function of the form outcome ~predictor(s) as we
have done with most of the models in this book. However, if you remember from the chapter,
because there are multiple outcomes in a MANOVA we have to first bind the variables together into a
single entity using the cbind() function. In the current example we want to combine Anxiety.Change,
Sad.Change, Happy.Change, Angry.Change, Disgust.Change and Contempt.Change, and we can
create a single outcome object by executing:

outcome<-cbind(marazillierData$Anxiety.Change, marazillierData$Sad.Change,
marazillierData$Happy.Change, marazillierData$Angry.Change,
marazillierData$Disgust.Change, marazillierData$Contempt.Change)

This command creates an object called outcome, which contains the outcome variables of the
marazillierData dataframe pasted together in columns. Therefore, for this example, we could
estimate the model by executing:

marzillierModel<-manova(outcome ~ Induction*Mood, data = marazillierData)

To see the output of the model we use the summary command; by default, R produces Pillai’s trace,
which is a sensible choice:

summary(marzillierModel, intercept = TRUE)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.56756 36.311 6 166 <2e-16 ***
Induction 2 0.07760 1.123 12 334 0.3397
Mood 2 0.88092 21.910 12 334 <2e-16 ***
Induction:Mood 4 0.16615 1.221 24 676 0.2148
Residuals 171

The main multivariate statistics are shown above. A main effect of mood was found, F(12, 334) =
21.91, p < .001, showing that the changes for some mood inductions were bigger than for others
overall (looking at the graph this finding probably reflects that the disgust mood induction had the
greatest effect overall — mainly because it produced such huge changes in disgust). There was no
significant main effect of the type of mood induction, F(12, 334) = 1.12, p > .05, showing that whether
videos, memory, tapes, etc., were used did not affect the changes in mood. The type of mood x type
of induction interaction was also non-significant, F(24, 676) = 1.22, p > .05, showing that the type of
induction did not influence the main effect of mood. In other words, the fact that the disgust
induction seemed to have the biggest effect on mood (overall) was not influenced by how disgust was
induced.

If we want to follow up the analysis with univariate analysis of the individual outcome measures,
then we can simply execute:

summary .aov(marzillierModel)

This produces the output below, which shows the ANOVA summary table for the dependent
variables. The table labelled Response 1 is for the Anxiety.Change variable, Response 2 indicates the
table for the Sad.Change variable, etc. The univariate effects for type of mood (which was the only
significant multivariate effect) show that the effect of the type of mood induction was significant for
all six moods (in other words, for all six moods there were significant differences across the anxiety,
disgust and neutral conditions).

Response 1 :

Df Sum Sg Mean Sg F value Pr (>F)
Induction 2 2578 1289.1 3.1725 0.04438 *
Mood 2 23826 11913.0 29.3174 1.128e-11 **=*
Induction:Mood 4 837 209.3 0.5150 0.72477
Residuals 171 69485 406.3
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Response 2
Df Sum Sg Mean Sg F value Pr (>F)

Induction 2 374 187.12 0.4819 0.618444
Mood 2 5501 2750.72 7.0842 0.001107 *x*
Induction:Mood 4 1048 261.91 0.6745 0.610509
Residuals 171 66397 388.29

Response 3
Df Sum Sg Mean Sg F value Pr (>F)

Induction 2 189 94.5 0.2553 0.77495
Mood 2 14194 7096.8 19.1652 3.09e-08 ***
Induction:Mood 4 5077 1269.2 3.4276 0.01005 *
Residuals 171 63321 370.3
Response 4

Df Sum Sqg Mean Sg F value Pr (>F)
Induction 2 836 418.2 1.133 0.3244780
Mood 2 6677 3338.3 9.044 0.0001847 ***
Induction:Mood 4 131 32.9 0.089 0.9857879
Residuals 171 63120 369.1

Response 5
Df Sum Sg Mean Sq F value Pr (>F)

Induction 2 217 108 0.2499 0.7792
Mood 2 92254 46127 106.2883 <2e-16 ***
Induction:Mood 4 3250 812 1.8721 0.1175
Residuals 171 74211 434

Response 6

Df Sum Sg Mean Sg F wvalue Pr(>F)
Induction 2 3010 1505.2 2.4814 0.0866363
Mood 2 8882 4440.8 7.3210 0.0008899 ***
Induction:Mood 4 2093 523.2 0.8625 0.4877492
Residuals 171 103726 606.6

Below is a graph that collapses across the way that mood was induced (video, music, etc.) because
this effect was not significant. We should do more tests, but just looking at the graph shows that
changes in anxiety (red bars) are higher over the three mood conditions (they go up after the anxiety
induction, stay positive for the disgust induction, and go down for the neutral induction). Similarly, for
disgust, the change is biggest after the disgust induction, it increases a little after the anxiety
induction and doesn’t really change after the neutral. Finally, for happiness, this goes down after both
anxiety and disgust inductions, but doesn’t change for neutral.

moodBar <- ggplot(moodMelt, aes(Mood, Frequency, fill = Outcome_Measure))

moodBar + stat_summary(fun.y = mean, geom = ‘bar', position = ‘dodge") +
stat_summary(fun.data = mean_cl boot geom = “errorbar”
position=position_ dodge(W|dth 0.90), width = 0.2) + labs(x = "Mood Induction Type", y
= "Mean Change', fill = "Outcome Measure'™) + scale_y_continuous(breaks = seq(-40, 70,
by = 10))

Qutcome Measure

I Aniety Chenge
I 1 saocrange

| e

I =
I I I . Angry.Change
0- . Disgust.Change
Contempt Change

Mean Change

—

| i i
Anxious Disgust Neutra

Mood Induction Type
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Smart Alex’s solutions
Task 1

e A clinical psychologist noticed that several of his manic psychotic patients did chicken
impersonations in public. He wondered whether this behaviour could be used to diagnose
this disorder and so decided to compare his patients against a normal sample. He observed
10 of his patients as they went through a normal day. He also needed to observe 10 of the
most normal people he could find: naturally he chose to observe lecturers at the University
of Sussex. He measured how many chicken impersonations they did in the streets of
Brighton over the course of a day, and how good their impersonations were (as scored out of
10 by an independent farmyard noise expert). The data are in the file chicken.dat. Use
MANOVA and DFA to find out whether these variables could be used to distinguish manic
psychotic patients from those without the disorder.

First of all —yes, you’ve guessed it — we need to read in the data!

chickenData<-read.delim('chicken.dat", header = TRUE)

Next we need to set the variable group to be a factor:

chickenData$group<-factor(chickenData$group, levels = c(1:2), labels = c("Manic
Psychosis', "Sussex Lecturers'))

Let’s explore the data with some graphs. To be able to plot a boxplot and an error bar graph, we
need the data to be in a long format, however at the moment they are in the wide format. Not to
worry, though, because as we have seen many times, we can convert the data into a long format
using the melt() function:

chickenMelt<-melt(chickenData, id = c("group"), measured = c("quality', "quantity'))
names(chickenMelt)<-c(''group","Outcome_Measure', "Value')

The above command produces a new dataframe called chickenMelt, which is chickenData converted
into a long format (it is not a chicken and cheese panini, which being a vegetarian is a relief to me ©).

We can now use the chickenMelt dataframe to plot a boxplot:

Boxplot <- ggplot(chickenMelt, aes(group, Value))
Boxplot + geom_boxplot() + labs(x = "Group"™, y = "Value'™) + facet_wrap(~
Outcome_Measure)

quality quantity

Value

Group
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and an error bar graph:

Bar <- ggplot(chickenMelt, aes(group, Value))

Bar + stat_summary(fun.y = mean, geom = "bar', position = "dodge", fill = "white") +
stat_summary(fun.data = mean_cl_boot, geom = *“errorbar™,
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Group", y = "Value™) +
facet_wrap(~ Outcome_Measure, ncol = 2, scales = "free_y")

quality quantity

Value

|
fanic Psychosi
Group

Both of the resulting graphs above show that manic psychotics and Sussex lecturers do pretty similar
numbers of chicken impersonations (lecturers do slightly fewer actually, but they are of a higher
quality).

We can also have a look at some descriptive statistics for both outcome variables using the by()
command:

by(chickenData$quality, chickenData$group, stat.desc, basic = FALSE)

chickenDatas$group: Manic Psychosis

median mean SE.mean CI.mean.0.95 var std.dev coef .var
7.000 6.700 0.335 0.758 1.122 1.059 0.158
chickenData$group: Sussex Lecturers
median mean SE.mean CI.mean.0.95 var std.dev coef .var
9.000 7.600 0.945 2.138 8.933 2.989 0.393

by(chickenData$quantity, chickenData$group, stat.desc, basic = FALSE)

chickenData$group: Manic Psychosis

median mean SE.mean CI.mean.0.95 var std.dev coef.var

12.500 12.100 1.337 3.025 17.878 4.228 0.349
chickenData$Sgroup: Sussex Lecturers

median mean SE.mean CI.mean.0.95 var std.dev coef .var

11.500 10.700 1.383 3.128 19.122 4.373 0.409

The tables above contain the group means, standard deviations, standard errors etc. for each
dependent variable in turn. These again show that manic psychotics and Sussex lecturers do pretty
similar numbers of chicken impersonations (lecturers do slightly fewer, but they are of a higher
quality).

Having looked at the data in summary form, we can start to look at assumptions. To check the
homogeneity of covariance matrices we can again use the by() function but in combination with the
cov() function, which can be used to print the covariance matrix to the console:

by(chickenData[, 2:3], chickenData$group, cov)

The above command takes columns 2 and 3 of the chickenData dataframe, which means that we’re
selecting the columns that contain the variables quality and quantity. The command then applies the
function cov() to these columns, but splits the output by the variable group.

The output below shows the variance—covariance matrices for each group. The diagonal elements
represent the variances for each outcome measure and the off-diagonals are the covariances (i.e., the
relationship between quality and quantity). The variances for quality are quite different across groups
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(1.12 and 8.93), with the largest variance being nearly nine times bigger than the smallest. The
variances for quantity are really quite similar (17.88 and 19.12), with a variance ratio of about 1.5,
which is below the threshold of 2. Looking at the covariances, these are very different (4.03 and
12.42), reflecting the different relationships between quality and quantity across the two groups. On
balance, there is evidence to suggest that the matrices are different across groups; however, given
the group sizes are equal, we probably don’t need to worry too much about these differences.
chickenDatas$group: Manic Psychosis
quality quantity

quality 1.122222 4.033333
quantity 4.033333 17.877778

chickenData$group: Sussex Lecturers
quality quantity

quality 8.933333 12.42222

quantity 12.422222 19.12222

The final assumption that we need to test is multivariate normality. We can do this using the
mshapiro.test() function. We need to apply this test to the groups individually, so the first thing to do
is to extract the data for each group and transpose the rows and columns using the transpose
function t() so that the data are in the correct format for mshapiro.test().

ManicPsychosis<-t(chickenData[1:10, 2:3])
SussexLecturers<-t(chickenData[11:20, 2:3])

To apply the test, we simply execute the function on each of the two variables that we have just
created:

mshapiro.test(ManicPsychosis)
mshapiro.test(SussexLecturers)

The output below shows the results of the two tests. It is clear that for both the manic psychosis (p =
.168), and Sussex lecturers (p = .147) there is no problem because both results are non-significant.

Shapiro-Wilk normality test

data: Z
W = 0.8897, p-value = 0.1683

Shapiro-Wilk normality test

data: 2Z
W = 0.8844, p-value = 0.1465

We can also look for multivariate outliers using the aq.plot() function:

aq.plot(chickenDatal[, 2:3])

Cumulative probat
02 04

L

AN

T T T T T T T T T T
2 4 6 8 10 0 2 4 6 8
Ordered squared robust distance

Outliers based on 97.5% quantile Outliers based on adjusted quantile

The resulting plots above show the case numbers (i.e. the row number in the dataframe), and you
need to be looking for values in red in all but the top right graph. You can see that row 10 might be an
outlier. In the top right plot, you are looking for any cases that fall to the right of the vertical line.
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Again, row 10 of the dataframe has been identified. These plots, therefore, suggest that row 10 might
be an outlier. We could delete this case and see whether it makes any difference to the multivariate
normality, although because we do not have a problem with multivariate normality in this example,
we could also keep it in.

Before running the main analysis we need to set some contrasts ... well, actually in this case we
don’t really because our categorical variable group has only two levels, but here is the code anyway:

contrasts(chickenData$group)<-c(-1, 1)

To run the main analysis, first we need to combine our two outcome variables, quality and quantity
into a single outcome object. We can do this by executing:

outcome<-chind(chickenData$quality, chickenDatas$quantity)

This command creates an object called outcome, which contains the outcome variables of the
chickenData dataframe pasted together in columns. Therefore, for this example, we could estimate
the model by executing:

chickenModel<-manova(outcome ~ group, data = chickenData)

To see the output of the model we use the summary command; by default, R produces Pillai’s trace,
which is a sensible choice:

summary(chickenModel, intercept = TRUE)

Df Pillai approx F num Df den Df Pr (>F)
(Intercept) 1 0.91882 96.201 2 17 5.376e-10 ***
group 1 0.33334 4.250 2 17 0.03185 *

Residuals 18

The main multivariate statistics are shown above. The column of real interest is the one containing
the significance values of the F-ratio for group. For these data, the test statistics for group is
significant, p = .032 (which is less than .05). From this result we should probably conclude that the
groups do indeed differ in terms of the quality and quantity of their chicken impersonations;
however, this effect needs to be broken down to find out exactly what’s going on.

To follow up the analysis with univariate analysis of the individual outcome measures, we can simply
execute:

summary .aov(chickenModel)

This produces the output below, which shows the ANOVA summary table for the dependent
variables. The table labeled Response 1 is for the quality variable and Response 2 indicates the table
for the quantity variable.

The row labelled group contains an ANOVA summary table for quality and quantity of chicken
impersonations, respectively. The values of p indicate that there was a non-significant difference
between groups in terms of both (both ps are greater than .05). The multivariate test statistics led us
to conclude that the groups did differ significantly in the quality and quantity of their chicken
impressions, yet the univariate results contradict this!

Response 1 :

Df Sum Sqg Mean Sqg F value Pr (>F)
group 1 4.05 4.0500 0.8055 0.3813
Residuals 18 90.50 5.0278

Response 2 :
Df Sum Sqg Mean Sq F value Pr (>F)

group 1 9.8 9.8 0.5297 0.4761
Residuals 18 333.0 18.5

We don’t need to look at the contrasts because the univariate tests were non-significant (and in any
case there were only two groups and so no further comparisons would be necessary), and instead, to
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see how the dependent variables interact, we need to carry out a discriminant function analysis. To
carry out discriminant function analysis for the current data, we would execute:

chickenDFA<-lda(group ~ quality + quantity, data = chickenData)

This creates a model called chickenDFA. To see this model, execute the name of the model:

chickenDFA

Call:
lda(group ~ quality + quantity, data = chickenData)

Prior probabilities of groups:
Manic Psychosis Sussex Lecturers
0.5 0.5

Group means:

quality quantity
Manic Psychosis 6.7 12.1
Sussex Lecturers 7.6 10.7

Coefficients of linear discriminants:
LD1

quality 0.8292832

quantity -0.4252235

The main part of the output above tells us the coefficients of the linear discriminants. We can see that
there was only one variate (because there are only two groups), therefore, the group differences
shown by the MANOVA can be explained in terms of one underlying dimension. The coefficients of
the linear discriminants also tell us the relative contribution of each variable to the variates. Both
quality and quantity of impersonations have quite large coefficients, indicating that they both have a
strong influence in discriminating the groups. However, they have the opposite sign, which suggests
that that group differences are explained by the difference between the quality and quantity of
impersonations.
We can have a look at a plot of the scores broken down by group membership by executing:

Hmﬂﬂ

group Manic Psychosis

plot(chickenDFA)
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The above graphs for each group confirm that variate 1 discriminates the two groups because the
manic psychotics have a negative coefficient and the Sussex lecturers have a positive one. There
won’t be a combined-groups plot because there is only one variate.

Overall we could conclude that manic psychotics are distinguished from Sussex lecturers in terms of
the difference between the pattern of results for quantity of impersonations compared to quality of
them. If we look at the means we can see that manic psychotics produce slightly more
impersonations than Sussex lecturers (but remember from the non-significant univariate tests that
this isn’t sufficient, alone, to differentiate the groups), but the lecturers produce impersonations of a
higher quality (but again remember that quality alone is not enough to differentiate the groups).
Therefore, although the manic psychotics and Sussex lecturers produce similar numbers of
impersonations of similar quality (see univariate tests) if we combine the quality and quantity we can
differentiate the groups.

Task 2

| was intrigued by a news story claiming that children who lie would become successful citizens
(http://bit.ly/ammQNT). | was particularly intrigued because although the article cited a lot of well-
conducted work by Dr Khang Lee that shows that children lie, | couldn’t find anything at all that made
the rather fabulous jump of logic to these children becoming successful citizens. If we wanted to test
this hypothesis, we could imagine a Huxleyesque parallel universe in which the government is stupid
enough to believe this newspaper story and decides to implement a systematic programme of infant
conditioning. Some infants were trained not to lie, others were brought up as normal, and a final
group were trained in the art of lying. Thirty years later, they collected data on how successful these
children were as adults. They measured their salary, and two indices of how successful they were in
their family and work life, on a 0—10 scale (10 = very successful, 0 = very unsuccessful). The data are
in lying.dat. Use MANOVA and DFA to find out whether lying really does make you a better citizen.

Let’s begin by reading in the data:
lyingData<-read.delim(*'lying.dat", header = TRUE)
Next, we need to set lying to be a factor with the levels labelled in the correct order:

lyingData$lying<-factor(lyingData$lying, levels = c("Lying Prevented", "Normal
Parenting', "Lying Encouraged™))

We then want to explore the data with some graphs. You probably know by now that to do this, we
need the data to be in the long format. The data have been entered in the wide format and so we
need to convert the data to the long format using the melt() function:

lyingMelt<-melt(lyingData, id = c("lying", "row'), measured = c('"salary", "family",
"work'™))
names(lyingMelt)<-c("lying™, "row", "Outcome_Measure'™, "Value'™)

To plot a boxplot we could execute:

Boxplot <- ggplot(lyingMelt, aes(lying, Value))
Boxplot + geom_boxplot() + labs(x = "Treatment Group"™, y = "Value'™) + facet_wrap(~
Outcome_Measure, ncol = 3, scales = "free_y")
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salary family work
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The resulting boxplot above suggests that children who were encouraged to lie had the highest
salaries and were the most successful at work; however, they were the least successful in their family
lives. On the other hand, children who were trained not to lie had the lowest salaries and the least
success in their work; however, they had the most success in their family life. The final group of
children who received normal parenting was OK in all areas, although their family success seems quite
low compared to children who were trained not to lie. Therefore, it seems that to be successful at
work and to earn a lot of money you need to be a good liar but to have a successful family life you
need to be honest and not lie.
To plot an error bar graph we could execute:

Bar <- ggplot(lyingMelt, aes(lying, Value))

Bar + stat_summary(fun.y = mean, geom = "bar', position = "dodge", fill = "white'") +
stat_summary(fun.data = mean_cl_boot, geom = *“errorbar™,
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Treatment Group", y =
"“Value') + facet_wrap(~ Outcome_Measure, ncol = 3, scales = "free_y")
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The resulting graph above displays much the same information as the boxplot, just in a different way.

Next it would be a good idea to have a look at the descriptive statistics for each outcome variable by
executing:

by(lyingData$salary, lyingData$lying, stat.desc, basic = FALSE)

lyingData$lying: Lying Prevented

median mean SE.mean CI.mean.0.95 var std.dev coef .var
2.67e+04 2.83e+04 2.23e+03 4.82e+03 6.97e+07 8.35e+03 2.95e-01
lyingDatas$lying: Normal Parenting
median mean SE.mean CI.mean.0.95 var std.dev coef .var
3.24e+04 3.09e+04 1.53e+03 3.30e+03 3.27e+07 5.72e+03 1.85e-01
lyingDatas$lying: Lying Encouraged
median mean SE.mean CI.mean.0.95 var std.dev coef .var
3.71le+04 3.54e+04 2.17e+03 4.68e+03 6.58e+07 8.11e+03 2.29e-01

by(lyingData$family, lyingData$lying, stat.desc, basic = FALSE)

lyingDatas$lying: Lying Prevented

median mean SE.mean CI.mean.0.95 var std.dev coef .var
6.500 6.357 0.775 1.674 8.401 2.898 0.456

lyingDatas$lying: Normal Parenting
median mean SE.mean CI.mean.0.95 var std.dev coef .var
4.000 3.929 0.633 1.368 5.610 2.369 0.603

lyingData$lying: Lying Encouraged
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median mean SE.mean CI.mean.0.95 var std.dev coef.var
3.000 3.214 0.526 1.136 3.874 1.968 0.612

by(lyingData$work, lyingData$lying, stat.desc, basic = FALSE)

lyingDatas$lying: Lying Prevented

median mean SE.mean CI.mean.0.95 var std.dev coef.var

4.000 4.143 0.582 1.258 4.747 2.179 0.526
lyingDatas$lying: Normal Parenting

median mean SE.mean CI.mean.0.95 var std.dev coef .var

7.000 6.214 0.720 1.556 7.258 2.694 0.434
lyingData$lying: Lying Encouraged

median mean SE.mean CI.mean.0.95 var std.dev coef .var

6.500 6.643 0.789 1.704 8.709 2.951 0.444

The tables above contain the group means, standard deviations, standard errors etc. for each
dependent variable in turn. These again show that children encouraged to lie won the best and
highest-paid jobs, but had the worst family success compared to the other two groups. Children who
were trained not to lie had great family lives but not so great jobs compared to children who were
brought up to lie and children who experienced normal parenting. Finally, children who were in the
normal parenting group (if that exists!) were pretty middle-of-the-road compared to the other two
groups.

Having looked at the data in summary form, we can start to look at assumptions. To check the
homogeneity of covariance matrices we can again use the by() function in combination with the cov()
function, which can be used to print the covariance matrix to the console:

by(lyingData[, 2:4], lyingData$lying, cov)

The above command takes columns 2 to 4 of the lyingData dataframe, which means that we’re
selecting the columns that contain the variables salary, family and work. The command then applies
the function cov() to these columns, but splits the output by the variable lying.

The output below shows the variance—covariance matrices for each group. The diagonal elements
represent the variances for each outcome measure and the off-diagonals are the covariances (i.e., the
relationship between salary, family and work). The variances for salary are quite similar across groups
(69717086.84, 32709144.90 and 65788080.73), with a variance ratio of about 1.8, which is just below
the threshold of 2. However, the variances for family are not that similar (8.40, 5.61 and 3.87), nor are
the variances for work (4.75, 7.26 and 8.71), although variance ratios are close to the threshold of 2.
Looking at the covariances, these are fairly different in most cases, reflecting the different
relationships between salary, work and family across the three groups. On balance, there is evidence
to suggest that the matrices are different across groups; however, given the group sizes are equal, we
probably don’t need to worry too much about these differences.

lyingDatas$lying: Lying Prevented

salary family work
salary 69717086.835 2268.659341 2263.956044
family 2268.659 8.401099 3.714286
work 2263.956 3.714286 4.747253
lyingDatas$lying: Normal Parenting

salary family work
salary 32709144.901 -2999.24176 1597.109890
family -2999.242 5.60989 2.170330
work 1597.110 2.17033 7.258242
lyingDatas$lying: Lying Encouraged

salary family work
salary 65788080.725 7075.0219780 7575.0659341
family 7075.022 3.8736264 -0.8406593
work 7575.066 -0.8406593 8.7087912

The final assumption that we need to test is multivariate normality. We can do this using the
mshapiro.test() function. We need to apply this test to the groups individually, so the first thing to do
is to extract the data for each group and transpose the rows and columns using the transpose
function t() so that the data are in the correct format for mshapiro.test().

Ip<-t(lyingData[l:14, 2:4])

np<-t(lyingData[15:28, 2:4])
le<-t(lyingData[29:42, 2:4])
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To apply the test, we simply execute the function on each of the two variables that we have just
created:

mshapiro.test(lp)
mshapiro.test(np)
mshapiro.test(le)

The output below shows the results of the two tests. It is clear that, for all three groups, lying
prevented (p =.114), normal parenting (p = .605) and lying encouraged (p = .161), there is no problem
because all results are non-significant.

> mshapiro.test (1p)
Shapiro-Wilk normality test

data: Z
W = 0.9003, p-value = 0.114

> mshapiro.test (np)
Shapiro-Wilk normality test

data: Z
W = 0.9528, p-value = 0.605

> mshapiro.test (le)
Shapiro-Wilk normality test

data: 2
W = 0.9106, p-value = 0.1608

We can also look for multivariate outliers using the aq.plot() function:

aq.plot(lyingData[, 2:4])
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The resulting plots above show the case numbers (i.e. the row number in the dataframe), and you
need to be looking for values in red in all but the top right graph. In this case it seems that there are
no outliers — hooray!

Main analysis

Before running the main analysis, we need to set some contrasts for the lying variable. When thinking
about the best contrasts to set, it makes sense for the first contrast to compare children who were
encouraged to lie (lying encouraged) with those who were not encouraged to tell lies (normal
parenting and lying prevented combined). It then makes sense for the second contrast to compare
children who had normal parenting with those who were trained not to lie. We can set these
contrasts by executing:

Encouraged_vs_Not<-c(1, 1, -2)
normal_vs_prevented <-c(1, -1, 0)
contrasts(lyingData$lying)<-cbind(Encouraged_vs_Not, normal_vs_prevented)

To run the main analysis, first we need to combine our three outcome variables, salary, family and
work into a single outcome object. We can do this by executing:
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outcome<-cbind(lyingData$salary, lyingData$family, lyingData$work)

This command creates an object called outcome, which contains the outcome variables of the
lyingData dataframe pasted together in columns. Therefore, for this example, we could estimate the
model by executing:

lyingModel<-manova(outcome ~ lying, data = lyingData)

To see the output of the model we use the summary command; by default, R produces Pillai’s trace,
which is a sensible choice:

summary(lyingModel, intercept = TRUE)

Df Pillai approx F num Df den Df Pr (>F)
(Intercept) 1 0.95711 275.252 3 37 < 2.2e-16 **x*
lying 2 0.47811 3.979 6 76 0.001626 **

Residuals 39

The main multivariate statistics are shown above. The column of real interest is the one containing
the significance values of the F-ratio for lying. For these data, the test statistic for lying is significant, p
< .01 (which is less than .05). From this result we should probably conclude that the groups do indeed
differ in terms of salary, family and work as a result of their lying ability; however, this effect needs to
be broken down to find out exactly what’s going on.

To follow up the analysis with univariate analysis of the individual outcome measures, we can simply
execute:

summary .aov(lyingModel)

This produces the output below, which shows the ANOVA summary table for the dependent
variables. The table labelled Response 1 is for the salary variable, Response 2 indicates the table for
the family variable and Response 3 is for the work variable.

Response 1 :

Df Sum Sqg Mean Sq F value Pr(>F)
lying 2 366202116 183101058 3.2655 0.04884 *
Residuals 39 2186786062 56071437

Response 2 :
Df Sum Sg Mean Sg F value Pr (>F)
lying 2 76.0 38.000 6.3742 0.004025 **
Residuals 39 232.5 5.962

Response 3 :
Df Sum Sg Mean Sq F value Pr(>F)
lying 2 50.048 25.0238 3.6241 0.03601 *
Residuals 39 269.286 6.9048

The row labelled lying contains an ANOVA summary table for success in the three areas: salary, family
and work, respectively. The values of p indicate that there was a significant difference between
groups in terms of all three dependent variables (all ps are less than .05).

We now need to look at the contrasts to see where these differences occur. Now, if you remember
from the chapter, the contrasts are not part of the main MANOVA model and so to generate the
output for them you have to create separate linear models for each outcome measure. This is
basically the same as doing a one-way ANOVA on each outcome measure. So, for salary, family and
work we would create the following models using the Im() function:
salaryModel<-Im(salary ~ lying, data = lyingData)
familyModel<-Im(family ~ lying, data = lyingData)
workModel<-Im(work ~ lying, data = lyingData)

The first command creates a model, salaryModel, based on predicting the variable salary from lying
and the second and third commands do pretty much the same but predicting family and work,
respectively. We can get the contrast parameters by using summary.Im():

summary . Im(salaryModel)

Coefficients:
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Estimate Std. Error t value Pr(s|t])

(Intercept) 31529 1155 27.287 <2e-16 ***
lyingEncouraged_vs_Not -1941 817 -2.376 0.0225 *
lyingnormal_ vs_prevented -1331 1415 -0.941 0.3526

summary . Im(fami lyModel)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4.5000 0.3768 11.944 1.33e-14 **x*
lyingEncouraged_vs_Not 0.6429 0.2664 2.413 0.0206 *
lyingnormal vs_prevented 1.2143 0.4614 2.632 0.0121 *

summary . Im(workModel)

Estimate Std. Error t value  Pr(>|t])
(Intercept) 5.6667 0.4055 13.976 <2e-16 ***
lyingEncouraged vs_Not -0.4881 0.2867 -1.702 0.0966 .
lyingnormal_vs_prevented -1.0357 0.4966 -2.086 0.0436 *

Looking at the Pr(>/t/)) columns in the output tables above, we can see that when we compare
people who were encouraged to lie as children with those who were not, there are significant
differences in salary (p = .023) and family success (p = .021), but not in work success (p = .097).
Looking back at the graphs and means, we can see that people who are trained to lie as children earn
significantly higher salaries but have significantly less successful family lives when compared to those
not trained to lie.

When we compare people who experienced normal parenting and those who were prevented from
lying as children, there were significant differences in both family (p = .012) and work success (p =
.044) but not in salary (p = .353). Again, if we look back at the boxplot and error bar graph, we can see
that people prevented from lying as children have significantly more successful family lives but are
significantly less successful at work when compared with those who experienced normal parenting.

For these data, we wouldn’t normally run a robust analysis because there were no problems with
normality. However, for the purposes of giving you an example of how you would run a robust
analysis, | am going to run one anyway.

Robust analysis
The robust functions need the data to be in wide format rather than long. Essentially we want levels
of the independent variable (lying) and outcome measures (salary, family and work) to be
represented in different columns. The outcome measures are already spread across different columns
(salary, family and work), but the lying group is differentiated by different rows of data. Therefore,
we need to take the rows representing people who were in the lying prevented, normal parenting
and lying encouraged groups and shift them into columns alongside the columns currently labelled
salary, family and work.

We can do this restructuring using the melt() and cast() functions. To get the restructuring to work,
we need to add a variable to our dataframe that identifies the rows in the wide format. We can add
this variable to the dataframe by executing:

lyingData$row<-rep(1:14, 3)

Executing this command creates a variable row in the dataframe lyingData, that is, the numbers 1 to
14 repeated three times. The structure of the data will be the same as before — it’s just that we have a
new variable called row that identifies the scores within each lying group.

Next we need to make the data molten so that we can cast the data into the wide format:

lyingMelt<-melt(lyingData, id = c("lying", "row'), measured = c('"salary", "family",
"work'™))

We can then take the lyingMelt dataframe and assign informative names to each column:
names(lyingMelt)<-c("lying™”, "row", "Outcome_Measure', "value'™)

Finally, we want to cast our data into the wide format using cast() and then remove the variable row
from the dataframe as we do not want it for the robust analysis:
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lyingRobust<-cast(lyingMelt, row ~ lying + Outcome_Measure, value = "value™)

lyingRobust$row<-NULL
You can view the dataframe by executing its name:
lyingRobust

To save space, I’'m not going to paste the data here, but you should have a look at it because it is
important to note the order of the columns: the hierarchy of the independent variables is lying
followed by Outcome_Measure. It is important that you specify the variables in this order because
this arranges the data correctly for Wilcox’s functions.

We need only specify the dataframe (lyingRobust) and then the number of groups (three in this
case) and the number of outcome measures (again there are three in this case). Therefore, we can do
a robust MANOVA based on ranks by executing:

mulrank(3, 3, lyingRobust)

cmanova(3, 3, lyingRobust)

Mulrank() cmanova()

Stest.stat Stest stat
[1] 4.359817 [1] 28.94646

$df
[1] 6
Snul 5 1
p.value
[1] 5.248292 [,1]
[1,] 6.227267e-05
Sp.value

[,1]
[1,1 0.000444425

SN
[1] 42
$g.hat

[,1] [,2] [,3]
[1,] 0.3707483 0.6862245 0.3350340
[2,] 0.4795918 0.4447279 0.5688776
[3,] 0.6496599 0.3690476 0.5960884

The output for both these commands is shown above. For Mulrank() we are given a test statistic for
the type of lying group (Stest.stat) as well as the corresponding p-value (Sp.value). We could conclude
that there was a significant main effect of the type of lying condition on outcome measures of
success, F = 4.36, p < .001. The numbers under Sg.hat tell us the relative effects (i.e., the typical ranks
across the combinations of groups in the rows and outcome measures in the columns).

We could relabel this grid as:

[salary] [family] [work]
[1p] 0.3707483 0.6862245 0.3350340
[np] 0.4795918 0.4447279 0.5688776
[le] 0.6496599 0.3690476 0.5960884

This shows that for the lying prevented group (lp), the ranks were fairly similar for salary and work
success (0.37 and 0.34) but were higher for family success (0.69). This indicates that lying prevention
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affects family success more than salary and work success. For the normal parenting (np) group, all
the ranks were fairly similar (0.48, 0.44 and 0.57), although they were slightly higher for work (0.57),
suggesting that normal parenting affects work more than the other two outcomes. Finally, for the
lying encouraged group (/e), the ranks were highest for salary and work (0.65 and 0.60), suggesting
that lying encouragement affected salary and work success more than family success.

The output of cmanova() tells us much the same things: we get a test statistic (Stest.stat), the
degrees of freedom (Sdf) and an associated p-value (Sp.value). We could conclude that there was a
significant main effect of the type of lying condition on outcome measures of success, H(6) = 28.95, p

<.001.
Reporting Results
v Using Pillai’s trace, there was a significant effect of lying on future success, V = 0.48, F(6, 76)

= 3.98, p < .01. Separate univariate ANOVAs on the outcome variables revealed significant
lying effects on salary F(2, 39) = 3.27, p < .05, family, F(2, 39) = 6.37, p < .01 and work,
F(2,39) = 3.62, p < .05. Contrasts revealed that: (1) people who were encouraged to lie as
children and those who were not did not differ significantly with regard to work success, b =
—-0.49, t(0.29) =-1.70, p > .05. However, people who were encouraged to lie as children grew
up to have significantly larger salaries, b = -1941.0, t(817) = —2.38, p < .05, and significantly
less successful family lives, b = 0.64, t(0.27) = 2.41, p < .05, than those who were not
encouraged to lie; (2) people who were prevented from lying as children and those who
experienced normal parenting did not differ significantly in terms of salary, b = -1331.0,
t(1415) = —0.94, p > .05; however, they were significantly more successful in their family
lives, b = 1.21, t(0.46) = 2.63, p < .05, but significantly less successful in their work lives, b = —
1.03, t(0.50) =-2.09, p < .05.

If you have used a robust MANOVA then you might report this as:

v

A MANOVA was conducted on the ranked data using Munzel and Brunner’s (2000) method
implemented in R using the mulrank() function (Wilcox, 2005). There was a significant main
effect of the type of treatment on outcomes of success, F = 4.36, p < .001.

A MANOVA was conducted on the ranked data using Choi and Marden’s (1997) method,
implemented in R using the cmanova() function (Wilcox, 2005). There was a significant main
effect of lying on outcomes of success, H(6) = 28.95, p < .001.

Task 3

| was interested in whether students’ knowledge of different aspects of psychology improved
throughout their degree. | took a sample of first years, second years and third years and gave
them five tests (scored out of 15) representing different aspects of psychology: exper
(experimental psychology such as cognitive and neuropsychology); stats (statistics); social
(social psychology); develop (developmental psychology); person (personality). Your task is
to: (1) carry out an appropriate general analysis to determine whether there are overall
group differences along these five measures; (2) look at the scale-by-scale analyses of group
differences produced in the output and interpret the results accordingly; (3) select contrasts
that test the hypothesis that second and third years will score higher than first years on all
scales; (4) select tests that compare all groups to each other and briefly compare these
results with the contrasts; and (5) carry out a separate analysis in which you test whether a
combination of the measures can successfully discriminate the groups (comment only briefly
on this analysis). Include only those scales that revealed group differences for the contrasts.
How do the results help you to explain the findings of your initial analysis? The data are in
the file psychology.dat.

Let’s begin by reading in the data:
psychologyData<-read.delim(*'psychology.dat", header = TRUE)

Next, we need to set group to be a factor with the levels labeled in the correct order:
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psychologyData$group<-factor(psychologyData$group, levels = ¢(0:2), labels =
c("Yr_1", "Yr_2", "Yr_3"))

Let’s have a look at the descriptive statistics by executing:

by(psychologyData$exper, list(psychologyData$group), stat.desc, basic = FALSE)
by(psychologyData$stats, list(psychologyData$group), stat.desc, basic = FALSE)
by(psychologyData$social, list(psychologyData$group), stat.desc, basic = FALSE)
by (psychologyData$develop, list(psychologyData$group), stat.desc, basic = FALSE)
by(psychologyData$person, list(psychologyData$group), stat.desc, basic = FALSE)

exper
: Yr_ 1
median mean SE.mean CI.mean.0.95 var std.dev coef.var
6.0000000 5.6363636 0.6504925 1.4493876 4.6545455 2.1574396 0.3827715
Yr 2
median mean SE.mean CI.mean.0.95 var std.dev coef.var
5.5000000 5.5000000 0.3979112 0.8481277 2.5333333 1.5916449 0.2893900
Yr 3
median mean SE.mean CI.mean.0.95 var std.dev coef.var
6.0000000 7.0000000 0.5883484 1.2819011 4.5000000 2.1213203 0.3030458
stats
: Yr 1
median mean SE.mean CI.mean.0.95 var std.dev coef.var
7.000000 7.545455 1.073343 2.391558 12.672727 3.559877 0.471791
Yr 2
median mean SE.mean CI.mean.0.95 var std.dev coef.var
9.0000000 8.6875000 0.5966486 1.2717264 5.6958333 2.3865945 0.2747159
Yr_ 3
median mean SE.mean CI.mean.0.95 var std.dev coef.var
11.0000000 10.4615385 0.8594526 1.8725864 9.6025641 3.0988004 0.2962089
social
: Yr_ 1
median mean SE.mean CI.mean.0.95 var std.dev coef.var
10.0000000 10.3636364 0.8232168 1.8342414 7.4545455 2.7303013 0.2634501
Yr 2
median mean SE.mean CI.mean.0.95 var std.dev coef.var
8.0000000 8.5625000 0.7010037 1.4941541 7.8625000 2.8040150 0.3274762
Yr 3
median mean SE.mean CI.mean.0.95 var std.dev coef.var
8.0000000 8.7692308 0.4550831 0.9915408 2.6923077 1.6408253 0.1871117
develop
: Yr 1
median mean SE.mean CI.mean.0.95 var std.dev coef .var
10.0000000 11.0000000 0.7977240 1.7774399 7.0000000 2.6457513 0.2405228
Yr 2
median mean SE.mean CI.mean.0.95 var std.dev coef .var
8.5000000 8.8750000 0.4269563 0.9100358 2.9166667 1.7078251 0.1924310
Yr 3
median mean SE.mean CI.mean.0.95 var std.dev coef .var
9.0000000 8.7692308 0.8408927 1.8321479 9.1923077 3.0318819 0.3457409
person
: Yr 1
median mean SE.mean CI.mean.0.95 var std.dev coef.var
11.0000000 10.6363636 1.0024763 2.2336563 11.0545455 3.3248377 0.3125916
Yr 2
median mean SE.mean CI.mean.0.95 var std.dev coef.var
8.0000000 8.4375000 0.4997395 1.0651696 3.9958333 1.9989581 0.2369135
Yr 3
median mean SE.mean CI.mean.0.95 var std.dev coef.var
9.0000000 8.3846154 0.6654328 1.4498535 5.7564103 2.3992520 0.2861493

The output above shows the tables of descriptive statistics of the group means and standard
deviations etc. of each year for each dependent variable in turn. | have edited the tables a little to
make them clearer.

Next we need to check the assumptions. To check the homogeneity of covariance matrices we can
again use the by() function in combination with the cov() function, which can be used to print the
covariance matrix to the console:

by(psychologyData[, 2:6], psychologyData$group, cov)

The above command takes columns 2 to 6 of the psychologyData dataframe, which means that we’re
selecting the columns that contain the variables exper, stats, social, develop and person. The
command then applies the function cov() to these columns, but splits the output by the variable
group.
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The output below shows the variance—covariance matrices for each group. The diagonal elements
represent the variances for each outcome measure and the off-diagonals are the covariances (i.e., the
relationship between each outcome measure). The variances for all of the outcome variables are
quite different and, looking at the covariances, these are fairly different in most cases too, reflecting
the different relationships between the different outcome variables across the three groups. On
balance, there is evidence to suggest that the matrices are different across groups; additionally, given
the group sizes are unequal, we probably should carry out a robust MANOVA on these data.

psychologyData$group: Yr 1

exper stats social develop person
exper 4.654545 5.018182 2.245455 1. 1.654545
stats 5.018182 12.672727 6.581818 4.5 4.118182
social 2.245455 6.581818 7.454545 6.2 6.445455
develop 1.100000 4.500000 6.200000 7.0 7.200000
person 1.654545 4.118182 6.445455 7.2 11.054545
psychologyData$group: Yr 2

exper stats social develop person
exper 2.5333333 1.500000 0.1666667 1.200000 1.033333
stats 1.5000000 5.695833 4.6541667 2.891667 3.412500
social 0.1666667 4.654167 7.8625000 3.675000 3.070833
develop 1.2000000 2.891667 3.6750000 2.916667 2.058333
person 1.0333333 3.412500 3.0708333 2.058333 3.995833
psychologyData$group: Yr 3

exper stats social develop person
exper 4.500000 -1.00000000 1.5000000 1.916667 1.16666667
stats -1.000000 9.60256410 0.8653846 4.032051 0.05769231
social 1.500000 0.86538462 2.6923077 2.525641 1.26282051
develop 1.916667 4.03205128 2.5256410 9.192308 3.01282051
person 1.166667 0.05769231 1.2628205 3.012821 5.75641026

The final assumption that we need to test is multivariate normality. We can do this using the
mshapiro.test() function. We need to apply this test to the groups individually, so the first thing to do
is to extract the data for each group and transpose the rows and columns using the transpose
function t() so that the data are in the correct format for mshapiro.test().

Yr_1<-t(psychologyData[l:11, 2:6])
Yr_2<-t(psychologyData[12:27, 2:6])
Yr_3<-t(psychologyData[28:40, 2:6])

To apply the test, we simply execute the function on each of the two variables that we have just

created:

mshapiro.test(Yr_1)
mshapiro.test(Yr_2)
mshapiro.test(Yr_3)

The output below shows the results of the three tests. It is clear that for years 1 and 2, the data
deviate significantly from multivariate normality, both ps < .05; however, for year 3 there is no
problem because the result of the Shapiro—Wilk test is non-significant, p > .05.
mshapiro.test (Yr_ 1)

Shapiro-Wilk normality test

data: Z
W = 0.7116, p-value = 0.0006605

> mshapiro.test (Yr_ 2)
Shapiro-Wilk normality test

data: Z
W = 0.8832, p-value = 0.04346

> mshapiro.test (Yr_ 3)
Shapiro-Wilk normality test

data: Z
W = 0.886, p-value = 0.08593

We can also look for multivariate outliers using the aq.plot() function:
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aq.plot(psychologyData[, 2
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The resulting plots above show the case numbers (i.e. the row number in the dataframe), and you
need to be looking for values in red in all but the top right graph. In this case it seems that there are
likely to be many outliers! In the top right plot, you are looking for any cases that fall to the right of
the vertical line labeled 97.5% Quantile. Again, it seems that there are likely to be a lot of outliers. We
could consider deleting all the outliers and see if it makes the data multivariate normal, but because
there are so many likely outliers it makes more sense to leave all the cases in and conduct a robust

MANOVA to combat the effects of the outliers.

Main analysis

Before running the main analysis we need to set some contrasts for the group variable. When
thinking about the best contrasts to set, it makes some sense for the first contrast to compare year 1
with the other two years combined and then for the second contrast to compare year 2 with year 3.

We can set these contrasts by executing:

Yri_vs_Yr2&3<-c(-2, 1, -1)
Yr2_vs_Yr3 <-c(0, -1, 1)
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contrasts(psychologyData$group)<-cbind(Yrl_vs_others, Yr2_vs_Yr3)

To run the main analysis, first need to combine our five outcome variables, exper, stats, social,

develop and personal, into a single outcome object. We can do this by executing:

outcome<-cbhind(psychologyData$exper, psychologyData$stats, psychologyData$social,

psychologyData$develop, psychologyData$person)

This command creates an object called outcome, which contains the outcome variables of the
psychologyData dataframe pasted together in columns. Therefore, for this example, we could

estimate the model by executing:

psychologyModel<-manova(outcome ~ group, data
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To see the output of the model we use the summary command; by default, R produces Pillai’s trace,
which is a sensible choice:

summary(psychologyModel, intercept = TRUE)

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.9604 160.09 5 33 < 2e-16 ***
group 2 0.5104 2.33 10 68 0.01995 *
Residuals 37

The main multivariate statistics are shown above. The column of real interest is the one containing
the significance values of the F-ratio for group. For these data, the test statistic for group is
significant, p <.05. From this result we should probably conclude that the profile of knowledge across
different areas of psychology does indeed change across the three years of the degree. The nature of
this effect is not clear from the multivariate test statistic.

To follow up the analysis with univariate analysis of the individual outcome measures, we can simply
execute:

summary .aov(psychologyModel)

This produces the output below, which shows the ANOVA summary table for the dependent
variables. The table labeled Response 1 is for the exper variable, Response 2 is for the stats variable,
Response 3 is for the social variable, Response 4 is for the develop variable and Response 5 is for the
person variable.

Response 1 :

Df Sum Sqg Mean Sg F value Pr(>F)
group 2 18.43 9.2148 2.4609 0.09922 .
Residuals 37 138.54 3.7445

Response 2 :

Df Sum Sqg Mean Sg F value Pr(>F)
group 2 52.5 26.2522 2.9668 0.06382 .
Residuals 37 327.4 8.8485

Response 3 :

Df Sum Sqg Mean Sq F value Pr (>F)
group 2 23.584 11.7922  1.941 0.1579
Residuals 37 224.791 6.0754

Response 4 :

Df Sum Sg Mean Sq F value Pr(>F)
group 2 37.717 18.8587 3.1142 0.05623 .
Residuals 37 224.058 6.0556

Response 5 :

Df Sum Sg Mean Sq F value Pr(>F)
group 2 39.415 19.7076 3.0438 0.05973 .
Residuals 37 239.560 6.4746

The row labelled group contains an ANOVA summary table for test scores in the five subject areas;
experimental, statistics, social, developmental and personality, respectively. The values of p indicate
that there was a non-significant difference between student groups in terms of all areas of psychology
(all ps are greater than .05). The multivariate test statistics led us to conclude that the student groups
did differ significantly across the types of psychology yet the univariate results contradict this (again
... | really should stop making up data sets that do this!).

We don’t need to look at contrasts because the univariate tests were non-significant; instead, to see
how the dependent variables interact, we need to carry out a discriminant function analysis.

To carry out discriminant function analysis we would use the ida() function. You may have already
noticed that the psychologyData data set has unequal group sizes (yrl = 11, yr2 = 16, yr3 = 13) and, if
you remember from the chapter, when you have unequal group sizes it is a good idea to base the
prior probabilities on the sample size of the group. We can do this using the prior option of ida(). and
execute:

psychologyDFA<-lIda(group ~ exper + stats + social + develop + person, data =
psychologyData, prior = c(11, 16, 13)/40)

This creates a model called psychologyDFA. To see this model execute the name of the model:

psychologyDFA
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Prior probabilities of groups:
Yr 1 Yr 2 Yr 3
0.275 0.400 0.325

Group means:

exper stats social develop person
Yr 1 5.636364 7.545455 10.363636 11.000000 10.636364
Yr_2 5.500000 8.687500 8.562500 8.875000 8.437500
Yr_3 7.000000 10.461538 8.769231 8.769231 8.384615

Coefficients of linear discriminants:
LD1 LD2

exper 0.1896714 0.407918384

stats 0.3097717 -0.027315706

social -0.1433943 0.129480761

develop -0.2510129 0.005388236

person -0.1022320 0.084955363

Proportion of trace:
LD1 LD2
0.9057 0.0943

The main part of the output above tells us the coefficients of the linear discriminants. We can see that
there were two variates. Looking at the first variate, it's clear that statistics has the greatest
contribution to this. Most interesting is that on the first variate, statistics and experimental
psychology have positive weights, whereas social, developmental and personality have negative
weights. This suggests that the group differences are explained by the difference between
experimental psychology and statistics compared to other areas of psychology. On the second variate,
all variables have positive weights except for statistics, which has a negative weight. This suggests
that the group differences are explained by the difference between statistics and all the other areas
of psychology, although the variables don’t have very strong relationships with the second variate,
suggesting that perhaps the group differences shown by the MANOVA can be explained in terms of
one underlying dimension only.

Finally, the proportion trace shows us that the first variate accounts for 90.57% of the variance
compared to the second variate, which only accounts for 9.43%, again suggesting that the MANOVA
can be explained in terms of one underlying dimension only.

It is also useful to have a look at a plot of the discriminant scores broken down by group
membership. This can be obtained by using the plot() function on our model:

plot(psychologyDFA)
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The above plot for these data indicates that variate 1 discriminates the first years from subsequent
years (look at the horizontal distance between these centroids).

Overall, we could conclude that different years are discriminated by different areas of psychology. In
particular, it seems as though statistics and aspects of experimentation (compared to other areas of
psychology) discriminate between first-year undergraduates and subsequent years. From the means,
we could interpret this as first years struggling with statistics and experimental psychology (compared
to other areas of psychology), but their ability improves across the three years. However, for other
areas of psychology, first years are relatively good but their abilities decline over the three years. Put
another way, psychology degrees improve only your knowledge of statistics and experimentation.©

Reporting results from discriminant analysis

v' The MANOVA was followed up with discriminant analysis, which revealed two discriminant
functions. The first explained 90.57% of the variance, whereas the second explained only
9.43%. The coefficients of the discriminant functions revealed that function 1 differentiated
experimental psychology (b = 0.19) and statistics (b = 0.31) from the other areas of
psychology: social (b = —0.14), developmental (b = —0.25) and personality (b = —0.10). For the
second variate, the coefficients of the discriminant functions differentiated statistics (b = —
0.03) from all other areas of psychology; experimental (b = 0.41), social (b = 0.13),
developmental (b = 0.01) and personality (b = 0.08). The discriminant function plot showed
that the first function discriminated year 1 students from the other two years, and the
second function differentiated the year 2 and year 3 students.

Robust analysis

If you remember back to when we tested the assumptions in this example, the data were found to
deviate from normal. Therefore, it would be appropriate to run a robust MANOVA on these data.

The robust functions need the data to be in wide format rather than long. Essentially we want levels
of the independent variable (group) and outcome measures (exper, stats, social, develop and person)
to be represented in different columns. The outcome measures are already spread across different
columns (exper, stats, social, develop and person), but the group variable is differentiated by
different rows of data. Therefore, we need to take the rows representing people who were in years 1,
2 and 3 and shift them into columns alongside the columns currently labelled exper, stats, social,
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develop and person. We can do this restructuring using the melt() and cast() functions. To get the
restructuring to work, we need to add a variable to our dataframe that identifies the rows in the wide
format. This is a little bit trickier for this particular example because our data set contains unequal
group sizes: year 1 has 11 students, year 2 has 16 students and year 3 has 13 students. Therefore, we
need to tell R that we want the variable row to list 1-11 for year 1, 1-16 for year 2 and 1-13 for year
3. We can do this by executing:

psychologyData$row<-rep(c(1:11, 1:16, 1:13))

Executing this command creates a variable row in the dataframe psychologyData, that is, the
numbers 1 to 11 then the numbers 1 to 16 and finally the numbers 1 to 16. The structure of the data
will be the same as before —it’s just that we have a new variable called row that identifies the scores
within each year group.

Next we need to make the data molten so that we can cast the data into the wide format:

psychologyMelt<-melt(psychologyData, id = c('group’™, "row'), measured = c(“exper",
"stats", "social", "develop", 'person'))

We can then take the dataframe psychologymelt and assign informative names to each column:

names(psychologyMelt)<-c(*'group’™, "row', "Outcome_Measure', *value'™)

Finally, we want to cast our data into the wide format using cast() and then remove the variable row
from the dataframe as we do not want it for the robust analysis:

psychologyRobust<-cast(psychologyMelt, row ~ group + Outcome_Measure, value = "value™)

psychologyRobust$row<-NULL

You can view the dataframe by executing its name:
psychologyRobust

To save space, I’'m not going to paste the data here, but you should have a look at it because it is
important to note the order of the columns: the hierarchy of the independent variables is group
followed by Outcome_Measure. It is important that you specify the variables in this order because
this arranges the data correctly for Wilcox’s functions.

We need only specify the dataframe (psychologyRobust) and then the number of groups (three in
this case) and the number of outcome measures (five in this case). Therefore, we can do a robust
MANOVA based on ranks by executing:

mulrank(3, 5, psychologyRobust)

Stest.stat
[1] 2.286823

Snul
[1] 5.163434
Sp.value

[,11
[1,] 0.04148764
SN
[1] 40
$g.hat

[,1] [,2] [,3] [,4] [,5]
[1,] 0.4431818 0.3602273 0.6295455 0.6681818 0.6443182
[2,] 0.4352273 0.5238636 0.4454545 0.4159091 0.4170455
[3,] 0.6181818 0.6897727 0.5284091 0.4750000 0.4204545

The output for the robust MANOVA is shown above. We are given a test statistic for the year group
(Stest.stat) as well as the corresponding p-value (Sp.value). We could conclude that there was a
significant main effect of year of study on psychology ability, F = 2.29, p < .05. The numbers under
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Sqg.hat tell us the relative effects (i.e., the typical ranks across the combinations of groups in the rows
and outcome measures in the columns).
We could relabel this grid as:

[exper] [stats] [sociall] [developl] [person]
[Yearl] 0.4431818 0.3602273 0.6295455 0.6681818 0.6443182
[Year2,] 0.4352273 0.5238636 0.4454545 0.4159091 0.4170455
[Year3,] 0.6181818 0.6897727 0.5284091 0.4750000 0.4204545

This shows that for year 1, the ranks were highest and fairly similar for social, developmental and
personality ability (0.63, 0.67 and 0.64). This indicates that in year 1 students are better at social,
developmental and personality psychology than they are at experimental and statistics. For year 2, all
the ranks were fairly similar (0.44, 0.52, 0.45, 0.42 and 0.42), although they were slightly higher for
stats (0.52), suggesting that in year 2 student’s ability is evenly spread across the five areas of
psychology. Finally, for year 3 the ranks were highest for experimental and statistics (0.62 and 0.69)
suggesting that by year 3 students are better at statistics and experimental psychology than they are
in the other areas of psychology. This reconfirms what we found in the discriminant analysis earlier,
that different years are discriminated by different areas of psychology. In particular, it seems as
though statistics and aspects of experimentation (compared to other areas of psychology)
discriminate between first year undergraduates and subsequent years. It seems that first years
struggle with statistics and experimental psychology (compared to other areas of psychology) but
their ability improves across the three years. However, for other areas of psychology, first years are
relatively good but their abilities decline over the three years.

Reporting results of robust MANOVA
v" A MANOVA was conducted on the ranked data using Munzel and Brunner’s (2000) method
implemented in R using the mulrank() function (Wilcox, 2005). There was a significant main
effect of the type of treatment on outcomes of success, F=2.29, p < .05.
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